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A general construction principle for the inflation rules for decagonal

quasiperiodic tilings is proposed. The prototiles are confined to be polygons

with unit edges. An inflation rule for a tiling is the combination of expansion and

division of the tiles, where the expanded tiles can be divided arbitrarily as long as

the set of prototiles is maintained. A certain kind of point decoration process

turns out to be useful for the identification of possible division rules. The method

is capable of generating a broad range of decagonal tilings, many of which are

chiral and have atomic surfaces with fractal boundaries. Two new families of

decagonal tilings are presented; one is quaternary and the other ternary. The

properties of the ternary tilings with rhombic, pentagonal and hexagonal

prototiles are investigated in detail.

1. Introduction

Since the discovery of quasicrystals (QCs) (Shechtman et al.,

1984), there has been a surge of interest in quasiperiodic

tilings with noncrystallographic point symmetries. Archetypes

of such tilings in the plane are the Ammann–Beenker tiling

(Grünbaum & Shephard, 1987; Beenker, 1982), the Penrose

tilings (Grünbaum & Shephard, 1987; Penrose, 1974, 1978,

1979) and the Stampfli square–triangle tilings (Stampfli, 1986;

Baake et al., 1992), which belong to the octagonal, decagonal

and dodecagonal Bravais classes, respectively. Their vertices

form a quasiperiodic point set called a quasilattice (QL),

which mimics the spatial arrangement of clusters in a two-

dimensional QC. In real QCs, still a far wider variety of cluster

arrangements are possible under different compositions and

temperatures (Edagawa et al., 1994, 2000). In order to advance

our understanding of the real structures, it is therefore

necessary to extend our scope for tiling models of QCs and to

describe the structures in a more systematic fashion. In the

present report, we mean by a two-dimensional tiling a disjoint

covering of the plane by edge-sharing copies of a finite number

of polygonal prototiles.

In general, a two-dimensional QL is constructed as a section

of a four-dimensional hypercrystal along the plane (physical

space), where the hypercrystal is constructed from atomic

surfaces (also called acceptance regions, acceptance domains

or windows) arranged periodically according to the relevant

Bravais hyperlattice. Each atomic surface extends only along

the perpendicular space, which is an orthogonal complement

to the physical space. It is the size and the shape of the atomic

surface(s) that determine most of the properties of the QL.

QLs that are mutually related through a uniform shift along

the perpendicular space form the so-called LI class, where LI

stands for local indistinguishability or local isomorphism.1

When constructing two-dimensional QLs by the section

method, it might seem that atomic surfaces are restricted to be

polygonal. However, certain important structures cannot be

obtained in this way; the dodecagonal square–triangle tilings

are typical examples which have rather complicated fractal

atomic surfaces (Stampfli, 1986; Baake et al., 1992; Smith, 1993;

Cockayne, 1994). Further examples with fractal atomic

surfaces can also be found in the literature (Zobetz, 1992;

Godrèche et al., 1993; Cockayne, 1995; Niizeki, 2007a). These

structures have been discovered by inflation methods, in which

the shapes of atomic surfaces are not given a priori. It is

important to note that even for a known atomic surface with a

fractal boundary, the computation of the structure by the

section method is impractical because minute numerical errors

cannot be avoided in judging which side of the boundary lies a

given point near the boundary. Therefore, the section method

does not suit the generation of such a QL, whereas an inflation

method can work well.

So far, a systematic attempt has been made to generate one-

dimensional binary tilings by inflation rules (Luck et al., 1993),

revealing that the structures tend to have fractal (Cantor-set-

like) atomic surfaces. In more than two dimensions, however,

inflation rules for quasiperiodic tilings are rarely known,

except for those described above. This situation is simply

caused by the difficulty in finding an inflation rule that does

not produce any inconsistency throughout the entire structure.

There is nevertheless some hope at present. Recently, a

systematic inflation method was developed for generating

QLs, i.e. quasiperiodic point sets, in general dimensions

(Niizeki, 2008). Let us call this method the point inflation

scheme (PIS) and each of its inflation algorithms a point

inflation rule (PIR). At this point, however, it should be

1 LI classes of QLs are further grouped into mutual-local-derivability classes
(Baake et al., 1991; Baake & Schlottmann, 1997).



remembered that a QL does not necessarily provide the

vertices of a tiling.

An advantage of employing tiling models for QCs lies in the

fact that they enable the entire structure to be decomposed

into a finite number of prototiles, or fundamental structural

units. Another possible advantage may lie in their stronger

geometrical constraints, which are based on physical reasoning

such as the avoidance of unrealistic short distances. The

present aim is therefore to develop a new inflation scheme for

generating quasiperiodic tilings. As in the case of archetypal

tilings in the plane, inflation rules should proceed by the

following steps: (1) expansion of the tiling and (2) division of

the expanded tiles into tiles of the original size. Bear in mind

that the expanded tiles can be divided in an arbitrary way as

long as the set of prototiles is maintained.

Here we propose to generalize the division of the tiles with

the help of a point decoration process. The point decoration

might simply be defined by a PIR, but this cannot prevent

excess points from being generated in general. One needs to

remove a part of the resulting point set so that the remaining

points constitute the vertex set of a tiling. Wherefore, the

point decoration can be defined instead by taking an appro-

priate subset of the set generated by a PIR. In other words, the

PIR is used to obtain the candidate positions for the decora-

tion, then only a part of it is accepted. The present scheme

turns out to be useful for discovering unknown tilings. For the

sake of a self-contained presentation, the following arguments

are confined to the decagonal case. Furthermore, the edges of

any tiling to be considered are all given by one of the ten unit

vectors, ej (j ¼ 0; . . . ; 9), which will be defined in x2.

The decagonal Bravais module K10 is introduced in x2,

which is devoted to mathematical preliminaries. It is a

projection of the four-dimensional decagonal lattice onto the

two-dimensional physical space. The new scheme for gener-

ating decagonal tilings is presented in x3. In x4, the present

scheme is applied to obtain two new families of decagonal

tilings; one is quaternary and the other ternary. The atomic

surfaces of the new tilings are presented in x5. In particular,

for the ternary tilings the atomic surfaces with fractal

boundaries are derived geometrically as the fixed sets of the

dual maps associated with the relevant inflation rules. A

statistical analysis is performed for the ternary tilings in x6.

Further remarks are given in x7.

2. Decagonal Bravais module

Let us define the quasicrystallographic axes for a decagonal

QL by the ten unit vectors ej ¼ cos ðj�Þ; sin ðj�Þð Þ with

j ¼ 0; 1; 2; . . . ; 9 and � ¼ �=5, pointing at the vertices of a

regular decagon centred at the origin. Among the ten vectors,

only four are linearly independent with respect to integer

coefficients. A conventional set of basis vectors is introduced

as ~eej :¼ e2j (j ¼ 0; 1; 2; 3), pointing at four vertices of a

pentagon from the origin, where the fifth vertex ~ee4 :¼ e8 is left

unused because it can be represented by the four bases;

~ee4 ¼ �
P3

j¼0 ~eej. The basis set generates a Z-module of rank

four called the decagonal Bravais module, denoted by the

symbol K10. Remember that the point group of K10 is the

dihedral group D10 (or 10mm in Hermann–Mauguin notation).

Furthermore, K10 has an important property of scaling invar-

iance �K10 ¼ K10, where � ¼ ð1þ
ffiffiffi
5
p
Þ=2 is the golden mean

(Niizeki, 1989a).2

The decagonal Bravais hyperlattice L10 is defined in a four-

dimensional Euclidean hyperspace E4, and it is generated by

the primitive basis vectors ð~eej; � ~ee?j Þ (j = 0, 1, 2 and 3), where
~ee?j :¼ e4j ðmod 10Þ (Niizeki, 1989a; Yamamoto, 1996) and � is an

arbitrary scale factor satisfying 0<� 6¼ 1. The point group G

of L10 is isomorphic to the dihedral group D10. The two-

dimensional physical space Ek is an irreducible subspace of E4

with respect to G, and it is inclined against L10 in an incom-

mensurate fashion. The orthogonal projection of L10 onto Ek

gives nothing but the decagonal Bravais module K10.

The two-dimensional perpendicular space E? is defined as

the orthogonal complement to Ek in E4; that is, E4 ¼ E
k
� E

?.

Then the hyperlattice L10 can be projected onto E? as well,

generating another Z-module, K?10. Since the orthogonal

projections from L10 to both K10 and K?10 are bijections, one

can introduce a natural bijection �̂� between the Z-modules;

K?10 ¼ �̂�K10.

We confine ourselves to the case when the vertex set RT of a

tiling T is a subset of the Bravais module K10. In the ordinary

cut-and-projection method (de Bruijn, 1981; Mackay, 1982;

Kramer & Neri, 1984; Duneau & Katz, 1985), RT is generated

as the orthogonal projection of ðEk þW Þ \ L10, a cut of L10

within a strip along Ek, onto Ek. The cross section of the strip,

W ð� E?Þ, is equivalent to the atomic surface in the section

method. The image of RT in E? is denoted as R?T :¼ �̂�RT . In

general, R?T is a dense subset of the atomic surface W , which

on the other hand should be included in the closure of R?T , i.e.

R?T � W � R?T .3

3. Generalized point substitution processes for tilings

In the PIS (Niizeki, 2008), a PIR is formulated as a set map ’
that acts on an arbitrary subset L of K10. ’ proceeds by

expanding L by a certain ratio � ð>1Þ and subsequently

placing a copy of a certain motif Sð� K10Þ centred at every

vertex. The ratio � can take any natural power of the Pisot unit

� (the golden mean) associated with K10, so that �L remains a

subset of K10. The motif S is a bounded set with a finite

number of points comprised of one or more shells, each of

which is an orbit of a point with respect to the point group D10.

One can put the procedure in a simple form as

’ðLÞ :¼ �Lþ S, in which the þ symbol implies

Aþ B � faþ b j8 a 2 A;8 b 2 Bg. Note that the resultant QL

would have the point group D10.
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2 In general, the ratio � is called the Pisot unit in the algebraic theory of
Bravais modules. For the octagonal or the dodecagonal cases, it takes the value
1þ

ffiffiffi
2
p

or 2þ
ffiffiffi
3
p

, respectively.
3 Some authors (Baake et al., 1991; Niizeki, 2008) define an atomic surface W
as a compact (i.e., closed and bounded) set in E?, hence W ¼ R?T . In this
paper, however, a more general approach is taken so that a part of the
boundary @W may be absent from W while fulfilling the gluing condition, as
explained in the text for the case of the RPH tilings (see Fig. 8).



The atomic surface of a QL generated by the PIS is iden-

tified as the unique attractor (Hutchinson, 1981) of the dual

set map ’? that acts in the perpendicular space;

’?ðXÞ :¼ ��X þ S?, where �� denotes the algebraic conjugate

of �, X an arbitrary set in E? and S? ¼ �̂�S. The dual set map

’? is contractive since 0< j��j< 1; it is nothing but an iterated

function system (IFS), which is a common technique for

generating fractal objects (Falconer, 1990). Indeed, the atomic

surfaces of many QLs generated by the PIS have fractal

boundaries. Various planar QLs have been found by the PIS

(Niizeki, 2008), which has also been applied to the case of

icosahedral QLs (Fujita & Niizeki, 2008).

Certain QLs can produce a tiling if the points are connected

by uncrossed edges of unit length, where the tiles are the

regions bounded by these edges. Let us call this property the

unit connectivity (UC) of the point sets. If a point set obtained

by successively applying a PIR has the UC property, the PIR

can be translated into an inflation rule for the tiling; that is,

expansion of the tiles followed by their division into the

original tiles. The division rules of the tiles are determined by

the generated points in the tiles. In general, however, unde-

sirable short distances prevent the generated point sets from

being translated into tilings. Such redundancies can be

discarded only by introducing an elimination step at each

iteration to take an appropriate subset which fulfils the UC

property. Then the expanded tiles are divided properly. We

call the new inflation process a generalized point substitution

process (GPSP). In the GPSP, the role of the PIR is to

generate the candidate positions for the vertices of a tiling.

For now, the UC property is required by the point set at

every iteration of a GPSP. A GPSP for decagonal tilings is

formally given by the following steps: Step I is expansion of

the tiling by the ratio �, where � is a natural power of � (the

golden mean), and step II is the decoration of every expanded

tile by points, where the positions of the points should origi-

nate from K10 and are assumed to be determined uniquely by

the shape of the expanded tile as well as those of its adjacent

neighbours. In practice, candidate positions for the points of

decoration are generated by a PIR, then an appropriate subset

is taken to determine the division of the tiles. Note that there

are degrees of freedom for the choice of the point decoration

provided that the point decoration is determined uniquely

within the first adjacent neighbours and that the set of

prototiles is maintained. It is this generality that allows us to

produce a broad class of new quasiperiodic tilings. The

degrees of freedom can be promoted further by allowing the

decoration to depend on farther neighbours. However, this

would complicate the algorithm and will not be considered.

4. Examples of decagonal tilings

Several decagonal tilings are generated by the GPSP scheme.

All the tilings presented below obey the UC property, in which

the vertices are connected through the ten unit vectors ej

(j ¼ 0; . . . ; 9) that form the edges of the tiles. Any vertex can

therefore be written as l ¼ n0 ~ee0 þ n1 ~ee1 þ n2 ~ee2 þ n3 ~ee3, or

alternatively it can be indexed as l ¼ ½n0n1n2n3	.

4.1. para-Penrose tiling

The present tiling has been reported already (Niizeki, 2008)

as one of the simplest decagonal tilings that can be generated

by the PIS. The scaling ratio of the relevant PIR is � ¼ �2,

while the motif S consists of two shells h½0000	i and h½1100	i,

where hli :¼ fgl j g 2 D10g is the orbit of the point l with

respect to D10. In addition to the four prototiles, i.e., the 36


rhombus (R), the regular pentagon (P), the crown (C) and the

pentacle star (S) of the pentagonal Penrose tiling (P1)

(Penrose, 1974; Grünbaum & Shephard, 1987), it has another

prototile, namely the barrel-shaped hexagon (H). This tiling is

called the para-Penrose tiling by Niizeki (2008).
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Figure 1
(a) The point decorations of the expanded prototiles for the para-Penrose
tiling are determined by superposing decagons centred at all the vertices.
(b) A square patch of the para-Penrose tiling with expanded tiles being
indicated by the thicker lines shows the division rules for the expanded
tiles. An S–P complex is indicated in the bottom-right corner.
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Figure 2
Square patches of RPHC tilings generated by GPSPs with expanded tiles being indicated by the thicker lines. They are distinguished by the division of
the G complex lying on the bottom of every expanded C tile. The division rules of the expanded P and H tiles are also affected by adjacent C tiles. (a–c) A
single point inside every G complex is eliminated, while the mirror symmetry is retained only in (a). A C–H complex is indicated in the bottom-right
corner of (a). (d–e) Two internal points of every G complex are eliminated. The mirror symmetry is retained only in (d).



In a single iteration, these tiles are expanded by the ratio �2

and then a copy of S is placed on every vertex; see Fig. 1(a).

One finds that each expanded tile is uniquely decorated with

the points of S’s within its border. As the new points are

connected with unit edges, the expanded tile is divided into

tiles of the original size, whereas in the vicinity of the

boundary the tiles can be shared with the neighbouring

expanded tiles. In particular, when dividing an expanded P or

H tile, segments near the boundary can be attributed to

different kinds of tiles. This means that the division rule is not

unique within the expanded tile itself. Still, it turns out to be

unique within the first adjacent neighbours, as one can readily

check in Fig. 1(b). Therefore, the present PIR satisfies the

necessary conditions for a GPSP.

4.2. RPHC tilings

The PIR for the para-Penrose tiling can be slightly altered

by removing a generated vertex inside every expanded C tile

at the symmetrical position. Obviously this does not affect the

uniqueness of the decoration within every expanded prototile,

and the resulting point set is shown to satisfy the UC property.

As a consequence, the combination of an S tile and a P tile (S–

P complex) lying at the centre of every expanded C tile turns

into one of a C tile and an H tile (C–H complex); see the

labelled pairs in the bottom-right corners of Figs. 1(b) and

2(a). Since the S prototile may no longer appear except at the

centre of an expanded S tile, it is a marginal one in the present

case; that is, an iteration of the above GPSP will generate a

quaternary tiling with R, P, H and C prototiles as shown in Fig.

2(a). The division rule of every expanded tile depends on its

first adjacent neighbours, as in the case of the para-Penrose

tiling.

There are yet different ways to remove a vertex in an

expanded C tile without affecting the set of prototiles. Let us

consider a gear-shaped complex (or a G complex), formed by

an S tile at the centre and five adjacent P tiles (see Fig. 3a),

lying on the bottom of the expanded C tile. Either one or two

of its five internal vertices may be removed. Thus the G

complex may be divided in two ways. By removing one vertex,

the G complex is divided into one H, one C and four P tiles

(Fig. 3b, left). There are five possible orientations, one of

which has been taken in the preceding paragraph. Two other

orientations are used in Fig. 2(b) and (c), while the remaining

two are their mirror images. Removing two internal vertices

affords yet another way to divide the G complex (Fig. 3b,

right). Of the five possible orientations, the only one that does

not break the mirror symmetry is used in Fig. 2(d). Two other

choices are shown in Fig. 2(e) and (f), while the remaining two

are their mirror images. By removing two vertices, the G

complex is divided into one R, two H and three P tiles.

We have constructed in total ten GPSPs for tilings with the

identical set of four prototiles. Recall that the eight GPSPs

without mirror symmetry would generate chiral tilings. If the

ten GPSPs are applied in a mixed and arbitrary order, infi-

nitely many tilings can be generated. Furthermore, if different

GPSPs are allowed to be applied at different locations at the

same time, the possibilities become unlimited.

4.3. RPH tilings

Let us see how the C prototile can be excluded from the

prototiles of RPHC tilings. Consider a turban-shaped complex

(or a T complex) composed of a C tile and two adjacent P tiles

in an RPHC tiling. A T complex is associated to every 36


angle of the expanded R and C tiles. The T complex can be

decomposed into three tiles, R, P and H tiles, by removing one

of the two inner vertices, thereby breaking the mirror

symmetry; see Fig. 3(c). If all the T complexes are (re-)divided

in such a way, an RPHC tiling turns into a tiling which does not

include any C tile. The two different ways to divide the T

complex are mirror images of one another, thus left- and right-

handed chiralities are associated with them.

It is tempting to apply either one of the chiral rules for

dividing all the T complexes; then the two GPSPs for both

chiralities are obtained. These GPSPs maintain the set of the

prototiles, R, P and H. The left-handed GPSP is shown in Fig.

4, the repetition of which generates a tiling shown in Fig. 5(a).

The mirror images of these figures correspond to the right-

handed counterparts. Note that the point decorations within

the expanded prototiles are not uniquely determined in this

case, but they are unique within the first adjacent shell. The

decoration uniquely determines the division of the expanded

prototiles. The two GPSPs may be applied in an arbitrary

order, resulting in an infinite number of RPH tilings. A tiling

shown in Fig. 5(b) is an outcome of an alternate repetition of

the right- and the left-handed GPSPs, where the final GPSP is

the left-handed one. In both of the tilings shown in Fig. 5, a

spiral pattern associated with the left-handed chirality can be

easily recognized. Again, many more possibilities exist if the
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Figure 3
(a) One G and three T complexes associated with an expanded C tile (the
hatched area) are shown. (b) Depending on whether one or two internal
vertices are removed, a G complex is divided in two different ways, which
may further take five distinct orientations relative to the expanded C tile.
(c) A T complex can be divided in two ways depending on the choice of an
internal vertex to be removed. In (b) and (c), the black dots indicate the
removed vertices.



two GPSPs are allowed to be applied at different locations at

the same time.

5. Atomic surfaces

The atomic surface of a quasiperiodic tiling T is closely

connected with the global characteristics of the structure. It

can be inferred by projecting the vertices of a patch of T

containing a sufficient number of vertices onto the perpendi-

cular space, E?. This is done in Fig. 6 for the six RPHC tilings

and in Fig. 7 for the two RPH tilings. The convex hulls of all

these atomic surfaces are the regular decagon whose vertices

are given by �ej (j ¼ 0; . . . ; 9), corresponding to the atomic

surface of the Penrose P1 tiling. However, different types of

erosion are observed near the boundaries even for tilings with

the same set of prototiles. The symmetry of an atomic surface

reflects that of the relevant tiling; all the atomic surfaces

except the two with the mirror symmetric GPSPs (Figs. 6a and

d) have the lower point symmetry with the cyclic group C10 (or

10). For each case, the erosion reveals complicated fractal

patterns. In particular, the three atomic surfaces that are

shown in Figs. 6(a), (c) and (e) exhibit hierarchical holes in the

boundary regions. The rest of the atomic surfaces maintain the

disc-like topology.

Recall that for a QL generated by the PIS the atomic

surface is simply identified as the unique attractor of the dual

set map ’?ðXÞ ¼ ��X þ S? (Niizeki, 2008); see x3. For a tiling

generated by the GPSP scheme, on the other hand, the dual

set map is associated with the determination of the candidate

positions, from which a certain subset should be eliminated.
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Figure 5
Square patches of RPH tilings generated by repeating the left-handed
GPSP (a) and by alternating between the right- and left-handed GPSPs
(b). Spirals in the arrangement of P tiles are emphasized with grey spots.
The black dots indicate the centres of the expanded P tiles with the
fivefold symmetric division rule (Fig. 4, B), showing that the frequencies
of local fivefold centres are somewhat different between the two.

Figure 4
The left-handed GPSP for the RPH tilings is shown. An expanded P or H
tile is divided in several different ways depending on its first adjacent
neighbours. Expanded tiles are thus classified into six classes according to
their division rules; they are labelled A to F. The black dots indicate the
removed vertices inside T complexes. The generated tiles can also be
classified into six classes but in two different ways depending on the
chirality of the subsequent GPSP (see also x6). For instance, a P tile
labelled (b, c) implies that it is classified into the b subclass if the next
GPSP is left-handed while into the c subclass if the next GPSP is right-
handed, where the bar indicates the mirror reflection. A mutually
inverted pair is denoted by a starred label; that is, c� ¼ ðc; cÞ and
d� ¼ ðd; dÞ. The label a� [i.e. ða; aÞ] for each R tile is suppressed merely
for the reason of space. Tiles with the label f only appear if the two
successive GPSPs have opposite chiralities, while tiles with the label e (or
e) only appear if the same GPSP is applied successively.



The elimination is represented in E
? as a subtraction of

unnecessary parts from ’?ðXÞ. In the following, the latter

process is presented for the RPH tilings, in which case

geometrical rules to determine the atomic surfaces are iden-

tified. However, since such geometrical rules are not easy to

generalize, the case of the RPHC tilings will be left open.

The PIR for the para-Penrose tiling given in x4.1 gives

S? ¼ fh½0000	i; h½1010	ig and �� ¼ ��2 for the dual set map

’?. The fixed set of ’?, which is a moth-eaten version of the

regular decagon (Niizeki, 2008), is the corresponding atomic

surface. The small part that is left out from the decagonal

atomic surface corresponds to a portion of concave vertices of

C tiles and S tiles, resulting in the emergence of H tiles in the

para-Penrose tiling.

In order to obtain the atomic surfaces for the RPH tilings, a

subtraction process must be combined with the dual set map at

each iteration. In Fig. 8, the initial polygon X0 is defined as a

decagonal star, which is known to be the atomic surface of a

non-chiral RPH tiling (Papadopolos & Kasner, 2003). It is

transformed by the dual set map to ~XX0 ¼ ’
?ðX0Þ. The

subtraction process for the chiral GPSPs (x4.3) can be

understood as a carving process near the boundary of ~XX0. Note

that five strips are superposed on the next figure, while five

more strips can be superposed upside down but are

suppressed. These strips are cut by the boundary of ~XX0, while

the two ends of each strip do not coincide through a transla-

tion. Accordingly, within each cut of the strips, two points can

lie on a line parallel to the strip with the distance ��. This leads

to an excessive appearance of short distance 1=� in Ek and

hence to the existence of C tiles. It turns out that for an RPH

tiling no such pair of points is allowed to exist within a single

strip. Therefore, either or both ends of each cut must be

carved so that they coincide through �� translations.

The carving process for the left- or right-handed GPSP is

simply to carve a single end only. As shown in Fig. 8, five strips

are arranged to form a pentacle star, which can be traced

either clockwise or anticlockwise. Let us fix that the pentacle

should be traced clockwise. Then for the left-handed GPSP,

the first end of each strip encountered while tracing the

pentacle should be carved so that it coincides with the trans-

late of the second end. These two ends fulfil the gluing

condition; namely, if a point on one end is taken into account,

the corresponding point on the other end should be discarded.

The carving process for all the ten strips results in a new

polygon X1, which is the atomic surface of another RPH tiling

(chiral in this case). The carving process is denoted as �l, while

the right-handed counterpart is denoted as �r , in which case

the opposite end of each strip is to be carved.

The atomic surface of an RPH tiling generated by the GPSP

scheme can be obtained by repeatedly applying �l � ’
? and/or

�r � ’
?. In the example shown in Fig. 8, only the left-handed

process �l � ’
? is used. In general, the subtraction process �

associated with the removal of unnecessary points from the

candidate positions can be rather complicated. At present, we

have been able to identify � only for the chiral RPH tilings and

some of their variants.4

6. Statistics of the RPH tilings

The inflation matrices are introduced in the following to

analyse the statistics of the RPH tilings. For each chirality,

there are six types of tiles that are divided differently, as can be

seen in Fig. 4. In order to define the inflation matrix, the

generated tiles need to be classified further into six types, so

that their numbers can be counted in each expanded tile. Note,

however, that the latter task depends on which chirality is to

be used in the next iteration. In Fig. 4, some of the small tiles
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Figure 6
Parts (a–f) show the atomic surfaces for the RPHC tilings in Figs. 2(a–f),
respectively. The grey areas represent the projections of a large patch
containing over 250 000 vertices onto E

?. Fine details including
hierarchical holes (pits) are visible.

4 Deterministic rules are also found for assigning opposite chiralities to the
two T complexes associated with each expanded R tile. This allows us to
generate another family of RPH tilings whose point group is D5 (or 5m), as
will be presented elsewhere.



are assigned different letters according to the chirality of the

next GPSP. There are four pairs of chiralities for the two

successive iterations, ll, rl, lr and rr. It is sufficient to consider

two particular cases, ll and rl, since the other cases are merely

mirror images of the former two; the latter have the same

inflation matrices as the former.

In the case ll, the division rules shown in Fig. 4 reveal that

the six expanded tiles are divided as

VA ¼ Va þ ð1=�
2
ÞVd þ Ve;

VB ¼ ð5=2ÞVa þ Vb þ 5Vc;

VC ¼ 2Va þ 2Vb þ 3Vc þ ½1� ð1=2�2
Þ	Vd;

VD ¼ ð5=2ÞVa þ 3Vb þ 2Vc þ ½3� ð1=2�2
Þ	Vd;

VE ¼ 2Va þ 4Vb þ ½4� ð1=�
2Þ	Vd;

VF ¼ 3Va þ 2Vb þ 4Vc þ 2Vd; ð1Þ

where Vx represents the volume of the tile labelled x. In the

case lr, the corresponding formulae are

VA ¼ Va þ ð1=�
2
ÞVd þ Vf ;

VB ¼ ð5=2ÞVa þ Vb þ 5Vc;

VC ¼ 2Va þ Vb þ 4Vc þ ½1� ð1=2�2Þ	Vd;

VD ¼ ð5=2ÞVa þ 2Vb þ 3Vc þ ½3� ð1=2�2
Þ	Vd;

VE ¼ 2Va þ 2Vb þ 2Vc þ ½4� ð1=�
2
Þ	Vd;

VF ¼ 3Va þ 2Vb þ 4Vc þ 2Vd: ð2Þ

It follows that the inflation matrices for all the four cases are

given by

M1 :¼ Mll ¼ Mrr

¼

1 0 0 1=�2 1 0

5=2 1 5 0 0 0

2 2 3 ½1� ð1=2�2Þ	 0 0

5=2 3 2 ½3� ð1=2�2Þ	 0 0

2 4 0 ½4� ð1=�2Þ	 0 0

3 2 4 2 0 0

0
BBBBBBBB@

1
CCCCCCCCA

ð3Þ

and

M2 :¼ Mlr ¼ Mrl

¼

1 0 0 1=�2 0 1

5=2 1 5 0 0 0

2 1 4 ½1� ð1=2�2Þ	 0 0

5=2 2 3 ½3� ð1=2�2Þ	 0 0

2 2 2 ½4� ð1=�2Þ	 0 0

3 2 4 2 0 0

0
BBBBBBBB@

1
CCCCCCCCA
: ð4Þ

One can check that the maximal eigenvalues of both M1 and

M2 are �4, corresponding to the rate of volume increase under
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Figure 8
The dual map for the left-handed GPSP is illustrated. Starting from a star
decagon X0 for a non-chiral RPH tiling, the dual set map ’? and the
subtraction process �l are alternately applied. For applying the dual set
map, a copy of the reduced figure, e.g. ��X0, is placed on every point of S?

indicated by the black dots. For �l, a single end of all the ten strips is
carved as described in the text. Only five strips are depicted by the thin
lines. By iteration, the composite of the two maps, �l � ’

?, generates a
series of figures X i (i ¼ 0; 1; 2; . . .) (thicker solid lines), each of which
corresponds to a ternary RPH tiling. The limit figure X1 is the boundary
of the atomic surface W for the RPH tiling generated solely by the left-
handed GPSP. Note that a triangular region close to the boundary of W is
divided into a central regular pentagon (A), 3/5 of which is occupied, and
the two adjacent isosceles triangles (B), half of which in total is occupied.

Figure 7
Parts (a) and (b) show the atomic surfaces for the RPH tilings in Figs. 5(a)
and (b), respectively. The grey areas represent the projections of a large
patch containing over 240 000 vertices onto E?, while the boundary lines
are obtained with the geometrical rules as presented in Fig. 8.



a single GPSP iteration. The relevant right-eigenvectors are

common to the two matrices, reading

v ¼ ð�3 � 4; 1
2½1þ ð1=�

2Þ	; 1
2½1þ ð1=�

2Þ	; 1; 1; 1Þt

�
�= ð0:236; 0:691; 0:691; 1; 1; 1Þt; ð5Þ

where the superscript t indicates the transposition. These six

components provide the relative area (volume) of the tiles

labelled a to f .

On the other hand, the left-eigenvectors for the common

maximal eigenvalue �4 give the number ratio of the tiles. For

M1 and M2, the relevant left-eigenvectors are

u1 ¼ ð�
4; �3
þ 1; 2�3; �3

� 1; 1; 0Þ

�
�= ð6:854; 5:236; 8:472; 3:236; 1; 0Þ; ð6Þ

u2 ¼ ð�
4; �3
� 1; 2�3

þ 2; �3
� 1; 0; 1Þ

�
�= ð6:854; 3:236; 10:472; 3:236; 0; 1Þ; ð7Þ

respectively. That the eigenvectors are different might seem

troublesome if the two GPSPs are applied in an arbitrary

order. It turns out, however, that no problem is caused by the

difference, since the inflation matrices multiplied by the wrong

eigenvectors will just give the right ones, i.e.,

u1M2 ¼ �
4u2; ð8Þ

u2M1 ¼ �
4u1: ð9Þ

It follows that the number ratios of the tiles depend only on

the chiralities of the final two iterations. The above two

distributions for the six types of tiles do not cause a difference

in the number ratios of the three prototiles, since the sums

over components for P tiles or H tiles are common to the two

left-eigenvectors. It follows that the number ratios of the three

prototiles in the present RPH tilings are

R : P : H ¼ 1 : 2 : 1=�, while the mean volume of the tiles is

1=� times that of an H tile.

The differences in the left-eigenvectors manifest themselves

in the statistics of local arrangements of tiles in the relevant

tilings. For instance, the second components of u1 and u2

representing the relative frequencies of P tiles labelled b are

different. This is manifested in the frequencies of the local

centres of fivefold symmetry in the two tilings shown in Fig. 5;

the difference can be rather significant from the viewpoint of

the structural stability as well as the physical properties if

these tilings are to be used for modelling physical QCs.

Importantly, the difference should also be connected to the

boundary shapes of the atomic surfaces. This point, however,

will be left for future investigation.5 There are on the other

hand three types of local centres of twofold symmetry

(Niizeki, 1989b) located (i) at the centres of R tiles labelled a

or a, (ii) at the centres of H tiles labelled e, e or f , and (iii) at

the mid-edge positions between two adjacent P tiles both

labelled b. The frequencies of these twofold centres are

common to the two cases.

7. Further remarks

The generality of the GPSP scheme is capable of generating a

number of unknown quasiperiodic tilings, many of which are

chiral. Let us briefly consider what the structure factor of a

chiral tiling looks like. In our examples, the breaking of the

mirror symmetry is carried by a small part of the atomic

surface near the boundary, while the main body of the atomic

surface maintains the mirror symmetry. Since the latter part

provides the main contribution to the structure factor, the

chirality is only manifested in relatively weak Bragg peaks. A

structure factor is shown in Fig. 9 for the tiling shown in Fig.

5(a), assuming a point scatterer on every vertex.

In the GPSP scheme, the removal of unnecessary points

from the given candidates for the point decoration forms a

critical step. This makes the scheme the most general and

robust technique for generating decagonal tilings. Further-

more, the application of the basic idea to the octagonal as well

as the dodecagonal cases is straightforward. Indeed, for most

of the known tilings, whether the atomic surfaces are poly-

gonal or fractal, inflation rules can be rephrased as GPSPs, i.e.

the combination of an expansion step and a point decoration

step.

Let us consider the particular case of the dodecagonal

square–triangle tilings. In this case, each of the vertices in the

expanded tiling is decorated by a three-shell motif S,

comprising the origin, an inner hexagon and an outer dode-

cagon. The hexagon can take two different orientations, which

can be chosen at random (Smith, 1993; Gähler, 1988) or

according to a deterministic rule; for instance, the local coor-
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Figure 9
The structure factor of the RPH tiling generated by the left-handed GPSP
depicted in Fig. 4. The area of each spot corresponds to the intensity. The
chirality is manifested in the weakest spots.

5 Identifying the classes of local centres of symmetry (Niizeki, 1989b) in
quasiperiodic tilings is an important task, which has been addressed in a
systematic way for the cases with polygonal atomic surfaces (Niizeki, 2007b).
A generalized argument is hence necessary for handling the cases with fractal
atomic surfaces.



dination can be used to fix the orientation (Hermisson et al.,

1997). One can see a similarity in the situation to the case of

the decagonal tilings that are presented in this paper.

Different tilings that are generated by applying different

GPSPs in different orders are all members of the random tiling

ensemble with the same set of prototiles. They are likely to

have energies very close to each other, so they have similar

statistical weights. Since they form a deterministic subset of

the relevant random tiling ensemble, the relevant contribution

to the entropy is called the ‘deterministic entropy’, a term

coined by Smith (1993).

Either of the left-handed and the right-handed GPSPs for

the RPH tilings is defined by exclusively applying one of the

two division rules for the T complex; see Fig. 3(c). One readily

recognizes that these two division rules are mutually

connected through a phason flip involving three tiles.

Accordingly, the RPH tilings embrace an abundance of flip-

ping sites. This has a significant implication when a physical

realization of a similar structure is to be considered, since the

phason degrees of freedom must play an important role in the

structural stabilization. One should also bear in mind that the

same kind of phason flips has been observed in situ in a d-Al—

Cu—Co QC at a temperature of 1123 K with a transmission

electron microscope (Edagawa et al., 2000).

8. Conclusions

A general inflation scheme for generating decagonal quasi-

periodic tilings has been proposed. In the new scheme, infla-

tion rules comprise three steps: expansion with the ratio �,

decoration of every vertex by a finite motif S and elimination

of unnecessary points by local rules. At every iteration, the

resulting point set should be unit-connective and form the

vertex set of a tiling. Since the point decoration process can be

readily generalized, various new tilings are expected to be

found. The usefulness of the present scheme has been

demonstrated by generating several new decagonal tilings,

among which the family of ternary tilings has been analysed in

detail. The concept can be extended not only to the octagonal

and dodecagonal cases, but also to the icosahedral cases

(including P-, F- and I-type Bravais classes), for which only a

few tilings are known.

The author is greatly indebted to K. Niizeki for instruction

in the mathematics of quasilattices and for a comment on the

issue of local centres of symmetries in the present tilings. The

author is also grateful to M. Mihalkovič, T. Ogawa and A.

Yamamoto for helpful comments on the subject.
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